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AERODYNAMIC CHAFtACTERISTICS OF VEHICLE BODIES AT 

CROSSWIND CONDITIONS IN GROUND PROXIMITY 

By Kalman J. Grunwald 
Langley Research Center 

SUMMARY 

A series of force tes ts  was conducted on unpowered, high-speed ground-vehicle 
model configurations to provide information on shapes of this type very near the ground. 
Of particular interest were the crosswind effects on the aerodynamic forces and moments 
of the six models tested. These tests were conducted over the moving-belt ground plane 
in  the 17-foot (5.18-m) test  section of the Langley 300-MPH7- by 10-foot tunnel at free-
s t ream dynamic pressure values of 10 lb/ft2 (478.8 N/m2). 

The results indicate that the half-circle configuration is desirable because of the 
low rolling moments it experienced; however, it did have higher l i f t  values than the other 
configurations and, from a utility standpoint, could be impractical. The half-circle con
figurations with extended sides may make good compromise configurations. 

All the ground-simulation techniques employed - moving ground belt, fixed ground 
belt, and image model - gave reasonable representations of the overall aerodynamic 
trends. 

INTRODUCTION 

The U.S. Department of Transportation has been given the immediate responsibility 
of providing improved passenger transportation service in  the Northeast Corridor from 
Boston to Washington. (See refs. 1 and 2.) In the a rea  of train transport, they have pro
vided impetus and support for improved passenger trains, such as the Metroliner and the 
Turbo train (refs. 3 and 4). Although not completely new systems, such as the Japanese 
National Railways system (appendix B of ref. 5), these trains do offer high speed and 
modern luxury conveniences. 

New concepts in high-speed ground systems such as the air-cushion vehicle are 
also being considered. (Some limitations of high-speed steel-wheel vehicles on steel 
rails are discussed in  ref. 6.) The French a r e  presently incorporating their Aerotrain 
(ref. 7) concept into a ground transportation system, and the British (ref. 8) are con
sidering a similar air-cushion vehicle for intercity use. 



The Office of High-speed Ground Transportation of the U.S. Department of 
Transportation has been sponsoring research on the air-cushion vehicle. The purpose 
of this work at present is to design, construct, and test a tracked air-cushion research 
vehicle from which data can be fed into the design and evaluation of operational 300-mph 
(483-km/hr) transportation systems. 

At the request of the U.S. Department of Transportation, the NASA Langley 
Research Center has been conducting supporting research. A ser ies  of force tests was 
conducted on unpowered vehicle model configurations to provide information on shapes of 
this type very near the ground. Ofparticular interest  were the crosswind effects on the 
aerodynamic forces and moments of the six models tested. These tests were conducted 
over the moving-belt ground plane in  the 17-foot (5.18-m) test section of the Langley 
300-MPH 7- by 10-foot tunnel at free-stream dynamic pressure values of 10 lb/ft2 
(478.8 N/m2). Included in  this investigation were the effects of small  changes in height 
and small  changes in  angle of attack. Different methods of ground simulation, including 
moving ground belt, stopped ground belt, and image model, were also examined. 

SYMBOLS 

An axis-system drawing indicating the positive direction of forces, moments, and 
angles is presented in  figure 1. All the data have been presented about the moment ref
erence center, shown in figures 2 to 7. 

A maximum cross-sectional area of models, feet2 ( m e t e d )  

CD drag coefficient, Drag 
SA 

CD,C drag coefficient corrected for base pres  su re 

Lift 
CL lift  coefficient, 

4A 

ACLlift-curve slope, -
AO! 

c Z  rolling-moment coefficient, Rolling moment 
@de 

AC1C rolling moment due to sideslip, -
I o  Ao 

Cm pitching-moment coefficient, Pitching moment 
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Cm,c pitching-moment coefficient corrected for base pressure 

ACm 
CmCY static pitching derivative, -

ACY 

Cn yawing-moment coefficient, 
Yawing moment 

qAde 

ACn 
cnP directional stability parameter, -

AP 

CY side-force coefficient, Side force 
SA 

ACYside-force derivative, -
AP 

de diameter of a circle with cross-sectional a r ea  equivalent to maximum cross-
sectional a rea  of models tested, inches (centimeters) 

H nominal height setting of model from ground belt o r  effective ground height 
for image models, inches (centimeters) 

2 length (all models 72 inches (183 cm)), inches (centimeters) 

4 dynamic pressure,  pounds/f oot2 (newtons/metera) 

r radius, inches (centimeters) 

V free-stream velocity, feet/second (meters/second) 

CY angle of attack, degrees 

P angle of sideslip, degrees 

MODEL AND APPARATUS 

Drawings of the six configurations a r e  presented in figures 2 to 7, and photographs 
of the half-circle and square-type configurations are presented in figure 8. The surface 
of each model was constructed of glass fiber and was supported by wood bulkheads for 
bracing. The bulkheads were mounted to an aluminum strongback which fastened to a 
six-component internal strain-gage balance. In order to prevent excessive vibration of 
the model, a set of pitch and roll  dampers was mounted inside the model. These dampers 
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were of the piston type, in  which a steel ball acting as a piston was immersed in  oil 
inside a closely fitting cylinder. The piston was attached to the rigid model support 
sting, and the cylinder was attached to the model. A checkload calibration revealed that 
no interaction effects from the dampers were in  evidence on the balance readings. 

The basic cross-sectional shapes of the configurations were chosen as follows: 
Two of the shapes, the square-type configuration (fig. 3) and the triangular-type configu
ration (fig. 4), were based on shapes tested in reference 9; the circular (fig. 2) and half-
circle (fig. 5) shapes were considered as other possible vehicle configurations. A pre
liminary ser ies  of tes ts  on these configurations indicated the desirability of testing shapes 
based on the half-circle design. The two half-circle configurations with extended sides 
(figs. 6 and 7) were then constructed, and the entire group of models was tested over the 
moving belt. 

Some tests  were conducted by using the image technique. In order to conduct these 
tests,  image models for three of the configurations were constructed from the same basic 
construction molds as the originals. A drawing and a photograph of the image-test setup 
a r e  presented in  figures 9 and 10, respectively. These models were mounted near the 
center of the tunnel from identically shaped support stings. A splitter plate was used to 
control the intermixing of the separated flow at the rear of the models, as suggested in  
reference 10. 

TESTS AND CORRECTIONS 

Test Procedure 

This investigation was conducted in the 17-foot (5.18-m) test  section of the Langley 
300-MPH 7- by 10-foot tunnel. Tests  were conducted over the moving-belt ground plane 
described in  reference 11. Data were also obtained for the circular,  square-type, and 
half-circle configurations by using the image technique. 

For the tes ts  over the ground belt, the model was set at an effective height at 
CY = Oo; then the tunnel dynamic pressure was brought to 10 lb/ft2 (478.8 N/m2), and the 
model was yawed from -loo to +20°. The effective height was determined from a sys
tematic measurement of the distance from the model to the ground at discrete locations 
under the model. From these measurements, a simple arithmetic average height was 
determined and called the effective height. The effective height at which the models were 
tested varied from 36 inches (91.4 cm), which can be considered out of ground effect, to 
0.1 inch (0.254 cm). At all heights except 36 inches (91.4 cm), data were recorded with 
the ground belt moving and stopped. The effect of angle of attack was also examined over 
the moving belt. For  these tests,  the model was set  at an effective height then pitched 
about the 50-percent-chord station of the model lower surface until the desired angle of 

4 




attack was attained. This angle was held constant, and the model was yawed from -loo 
to 20°. 

For  the image tests, it was  necessary to separate the test model and the image 
model by a distance equal to twice the effective height. This separation is required 
because the effective ground location for these tests is halfway between the models. The 
models were then yawed from -loo to 20'. 

Because of the small  size of the models with respect to the tunnel and the low l i f t  
values, no corrections for blockage and wall interference were applied, since these effects 
would be insignificant. 

The Reynolds number, based on free-stream velocity and the model length of 6 feet 
(1.83 m), was approximately 3.7 x 106. The maximum crosswind Reynolds number, based 
on an effective model diameter of 9 inches (0.229 m), was approximately 0.2 X 106. For 
long slender bodies of the type tested and presented in  this paper, references 12 and 13 
state that the Reynolds number should be based on body length not body effective diameter 
associated with the cross-sectional area because at low angles of sideslip the boundary 
layer is primarily dependent on the axial flow. The Reynolds number of 3.7 x 106 is con
sidered to be supercritical, and therefore, the data would be representative of data for 
larger scale vehicles. 

Problems in  Maintaining Effective Height 

Although the moving belt has been used as a research tool and the image technique 
has been employed in  the past for ground simulation, neither technique has been used at 
such low heights o r  with models so  close together. The moving belt, its backing plate, 
and the lower surfaces of the models introduced minor inaccuracies in  setting the height 
because of their surface irregularities. At the higher height settings, these inaccuracies 
were only a small  percentage of the height setting. But at the 0.100-inch (0.254-cm) 
setting, a change of 0.010 inch (0.025-cm) in  the backing plate and a 0.007-inch 
(0.0178-cm) variation in  belt thickness represent a sizable percentage of the effective 
height. During belt operation another source of height e r r o r  is introduced by the belt 
lifting off the backing plate. The belt was observed while operating and was  found to be 
lifting by as much as 0.030 inch (0.076 cm) at some speeds. This 0.030-inch (0.076-cm) 
variation was determined by the use of a height gage placed at the edge of the belt away 
from the model. Visual observation of the height under the model indicated that the belt 
was not lifting the full 0.030 inch (0.076 cm). The pressures  acting on the lower surface 
of the model may have pushed the belt down and thereby decreased the amount of belt 
lifting. In any case, precise knowledge of the height setting was not possible. For  this 
paper, no adjustment was made to the data for the belt lifting. 
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The image models, which were sting mounted, a lso introduced both height setting 
problems and symmetrical mounting problems. Although the models were made from the 
same basic mold, minor construction differences in  external shape caused difficulty in  
mounting the models at a uniform height setting over their length. 

An additional complication in  maintaining effective height resulted from the severe 
buffeting experienced by the models during the image tests. Although some buffeting was 
in  evidence during the tes ts  over the belt, the magnitude was considerably lower than buf
feting during the image tests, which was, i n  some cases, severe enough to cause premature 
run terminations. This condition is most probably a result  of the unsteady flow created 
in  the mixing region between the two models. A more complete discussion of this phe
nomenon is presented subsequently. 

PRESENTATION OF RESULTS 

Figures 11 to 25 a r e  presented for discussion and analysis. Figure 26 is a sketch 
of a representative vehicle. The res t  of the figures (figs. 27 to 51) a r e  basic data figures 
for  all tests conducted during this investigation. The following table presents the prin
cipal variables in  each data figure. 

Figure 

Effect of configuration: 
Longitudinal data: 

Ha! = Oo; -- z Range; ground belt moving . . . . . . . . . . . . . . . . . . . . .  11 
de 

Lateral data: 

a! = Oo; -H z Range; ground belt moving . . . . . . . . . . . . . . . . . . . . .  12 
de 

Lateral effectiveness : 

a = 0O; -H Range; ground belt moving . . . . . . . . . . . . . . . . . . . . .  13 
de 

Stability derivatives: 

p = 0'; 	 -H 
=: 0.03; ground belt moving . . . . . . . . . . . . . . . . . . . . . .  14 

de 
p = 12'; 	 -H 0.03; ground belt moving . . . . . . . . . . . . . . . . . . . . .  15 

de 
p = 12O; -H 0.03;ground belt stopped . . . . . . . . . . . . . . . . . . . . .  16 

de 

Effect of ground simulation 

Circular configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 to 19 
Square-type configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20 to 22 
Half-circle configuratioii . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 to 25 
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Effect of ground height 

Circular configuration: 
Ground belt moving . . . . . . . . . . . . . . .  
Ground belt stopped . . . . . . . . . . . . . .  

Square-type configuration: 
Ground belt moving . . . . . . . . . . . . . . .  
Ground belt stopped . . . . . . . . . . . . . .  

Triangular-type configuration: 
Ground belt moving . . . . . . . . . . . . . . .  
Ground belt stopped . . . . . . . . . . . . . .  

Half -cir cle configuration: 
Ground belt moving . . . . . . . . . . . . . . .  
Ground belt stopped . . . . . . . . . . . . . .  

Half-circle (short extended sides) configuration: 
Ground belt moving . . . . . . . . . . . . . . .  
Ground belt stopped . . . . . . . . . . . . . .  

Half -circle (long extended sides) configuration: 
Ground belt moving . . . . . . . . . . . . . . .  
Ground belt stopped . . . . . . . . . . . . . .  

Figure 

. . . . . . . . . . . . . . . . .  27 

. . . . . . . . . . . . . . . . . .  28 

. . . . . . . . . . . . . . . . .  29 

. . . . . . . . . . . . . . . . .  30 

. . . . . . . . . . . . . . . . .  31 

. . . . . . . . . . . . . . . . .  32 

. . . . . . . . . . . . . . . . .  33 

. . . . . . . . . . . . . . . . .  34 

. . . . . . . . . . . . . . . . .  35 

. . . . . . . . . . . . . . . . .  36 

. . . . . . . . . . . . . . . . .  37 

. . . . . . . . . . . . . . . . .  38 

Effect of angle of attack (all configurations; ground belt moving and 
stopped) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 to 48 

\ 

Effect of height technique; -H 
de 

Circular configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 
Square-type configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50 
Half -cir cle configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51 

DISCUSSION 

The data presented in  this paper could apply to the body aerodynamics of a tracked 
air-cushion vehicle on a flat guideway o r  a steel-wheel train on a steel  track. In either 
case, the parameters of principal concern are those which might cause the vehicle to l i f t  
off its guideway as a result  of a substantial crosswind. To evaluate the force and moment 
data in  figures 11 to 25,  a representative vehicle has been proposed and is sketched in  
figure 26. For this slender vehicle, the long pitching- and yawing-moment a r m s  result 
in  minimizing the effect of aerodynamic pitching moment and yawing moment. Aerody
namic side force resulting from a crosswind acting on either a rail vehicle o r  an air-
cushion vehicle would increase the power required during acceleration and also to 
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maintain speed, but would not cause the vehicle to upset. The principal danger occurs 
when a combination of rolling moment and lift force could cause the vehicle to become 
airborne. This problem could be further aggravated by track irregularit ies which could 
result  in  the vehicle assuming a nose-up attitude during normal travel; under these cir
cumstances, an additional increase in  lift could occur. 

Other factors, such as centrifugal loads experienced when rounding curves, may 
contribute to upsetting the vehicle. However, only the principal aerodynamic parameters 
are considered herein. 

Configuration Effects 

-Lift. - The longitudinal aerodynamic coefficients a r e  plotted as functions of sideslip 
(crosswind) and presented in  figure 11for the six basic cross-sectional shapes tested 
through a ground-height range with the ground belt moving. As expected, the symmetri
cal circular configuration develops little or  no l i f t  in the crosswind condition out of ground 

effect - 3.3). (See fig. ll(a).) The square-type configuration develops some negative(:
lift due'to its contoured nose shape, but this l i f t  is still rather low. In general, for the 
configurations tested, there exists a systematic progression in l i f t  coefficient from the 
symmetrical circular configuration to the low-aspect-ratio, winglike half-circle config
uration. Although lift increases for all configurations as the models a r e  moved nearer 
the ground, the lift-coefficient spread between the circular configuration and the half-
circle configuration is reduced. Therefore, the effect of cross  section decreases as the 
model moves into ground effect. 

The maximum l i f t  coefficient measured was 1.65 for the half-circle configuration at 

p = 200 and -H 0.01, (See fig. ll(h).) For the representative vehicle shown in fig
de 

ure  26 (64 feet (19.51 m) long and effectively 8 feet (2.44 m) wide, moving at 300 mph 
(483 km/hr) with a 110-mph (177-km/hr) crosswind, and weighing 30 000 pounds 
(133 kN)) this is equivalent to 19 000 pounds (85 kN) of lift. With a 60-mph (96.5-km/hr) 
crosswind, which is approximately 12' of sideslip, and at 300 mph (483 km/hr) forward 
speed, the maximum l i f t  coefficient is 0.6, which for the representative vehicle would be 
7000 pounds (31 kN) of lift. As far as the vehicle lifting off the track is concerned, these 
lift values do not appear to be excessive. 

Rolling moment. - The lateral-directional coefficients a r e  presented in figure 12. 
The slopes through zero sideslip angle C CnP, and CYP 

a r e  presented as functions 

of ground height in  figure 13. Since the vehicle is long and narrow, the significance of 
pitch and yaw is small  and the effect of the roll input becomes substantial. At 200 of 
sideslip, the roll slopes Cl 

P 
for the circular configuration very near the ground 
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approach a value of -0.048 per degree. For  the representative vehicle traveling at 
300 mph (483 km/hr), this 110-mph (177-km/hr) crosswind causes a rolling moment of 
approximately 90 000 ft-lb (122 018 m-N). If the lateral support points for the vehicle 
are 5 feet (1.52 m) apart, the vehicle would be required to offset approximately 
18 000 pounds (80 kN) of force on the opposing side. At the more representative condi
tions of a 60-mph (96.5-km/hr) crosswind and p = 12O, approximately 11 000 pounds 
(49 kN) of force would have to be offset. If these values are assumed to be representa
tive, it is extremely important that the rolling moments be reduced. Of the models 
tested, the half-circle configuration exhibited significantly lower values of rolling moment,

Has can be seen in figure 13 where at - 0.01, C
zP 

= -0.004. These values are equiv
de 

alent to 5000 ft-lb (6779 m-N) of rolling moment for the 60-mph (96.5-km/hr) crosswind 
and would require only 1000 pounds (4448 N) of force on one side to compensate. This 
order-of-magnitude reduction in rolling moment makes the half-circle configuration 
highly desirable. 

The main drawback of the half-circle configuration is that it tends to-be inefficient 
for passenger loading and also for guide-pad mounting for an air-cushion vehicle. The 
half-circle configurations with extended sides represent compromise configurations; their 
shapes a r e  more utilitarian, and their roll values are relatively low. 

Angle of attack.- Thus far, l i f t  and rolling moment have been mentioned as principal 
contributors to untracking; the third major contributor is a change in  angle of attack. 
Under certain conditions, as a result  of inertial effects caused by the vehicle passing over 
irregularit ies in the guideway, the vehicle may nose up and experience additional upsetting 
forces and moments. The aerodynamic parameters principally affected by angle of attack 
are rolling moment, pitching moment, and lift. Figures 14, 15, and 16, which have been 

ACZderived from the basic data figures, present - Cma, and CL, plotted as functions
A a  ' 

of configuration. By evaluating the design condition of an assumed 300-mph (483-km/hr) 
forward speed and a 60-mph (96.5-km/hr) crosswind, the relative significance of the 
angle of attack with respect to the parameters already discussed can be determined. On 
the representative vehicle a change of 1' in angle of attack would mean a 15-inch 
(0.381-m) movement of the nose with respect to the rear. This much change is unlikely. 
However, a 2- o r  3-inch (5- or 7.6-cm) change is conceivable and corresponds to a 
change of approximately 0.2' in  angle of attack. By evaluating the half-circle configura
tion which displays the largest  effect of angle of attack, if  A a  = 0.2', then ACL = 0.35, 
which for the representative vehicle is equivalent to 4000 pounds (17.8 kN) of lift. From 
the data in figure 15 for the half-circle configuration and hac = 0.2O, it can be found that 
ACz = -0.056, which resul ts  in an  additional 5000 ft-lb (6779 m-N) of rolling moment. As 
was previously mentioned, these loads, although not excessive, do add to the overall 
forces acting on the vehicle and must be considered. 

9 



The half-circle configuration appears to be desirable because of the low basic 
rolling moments it experienced; however, it did have higher l i f t  values than the other 
configurations, and from a utility standpoint, could contain wasted space. The half-circle 
configurations with extended sides may make good compromise configurations. These 
configurations also exhibit low values of rolling moment and are more compatible with a 
high-speed system from a utility standpoint. 

Ground Simulation 

The three types of ground simulation used during the testing were as follows: 
model over the moving ground belt, model over the stopped ground belt, and model with 
inverted image. These three types are compared at different ground heights for the cir
cular configuration in  figures 17 to 19, for the square-type configuration in figures 20 
to 22, and for the half-circle configuration in figures 23 to 25. 

Moving ground belt.- In order to simulate the proper relative velocity and direction 
of the airs t ream over the model in the yawed, or  crosswind, condition in the tunnel, it 
would be necessary to have the moving ground belt traveling in  the same direction as the 
model axis and at the same relative wind velocity. This condition could be met at all 
yawed model locations if  the ground belt rotated with the model. However, the ground 
belt cannot be rotated, and therefore the only time this condition is met is at zero yaw 
angle, where the moving belt establishes the same relative velocity between the ground 
and the model as would be experienced by the full-scale vehicle moving over a guideway. 
In effect, during the yawed conditions, the crosswind boundary layer which, under actual 
operating conditions, would exist on the guideway has been eliminated. However, through 
the yaw-angle range of the tests, the difference can be considered negligible. 

Stopped ground belt.- Tes ts  were also conducted over the stopped ground belt. As 
was previously mentioned, the relative velocity difference that should exist between the 
ground and the model is equal to the effective velocity of the model. This condition is 
drastically violated in  the wind tunnel when the ground belt is stopped. The primary pur
pose of these tests was to determine the significance of such a violation of the real 
conditions. 

Image technique. - The image technique basically provides another form of proper 
relative-velocity simulation between the free air and the ground. As stated by Hoerner 
in  reference 10, the image method, because of its symmetry, theoretically res t r ic ts  air 
particles from penetrating the imaginary ground surface. In the actual condition the flow 
between the models is turbulent and separated, and the velocity components are crossing 
the plane of symmetry. It is also true that the formation of the vortex system aft of the 
vehicle may be affected by the nonexistence of the ground surface. Hoerner suggested 
that a plate be located behind the double model to prevent the motion of the larger  
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vortices across  the plane of symmetry. Such a plate was installed (figs. 9 and 10) during 
the tests. 

Effect of Ground Simulation 

Model cross  section.- Certain cross-sectional shapes, when tested over all three 
simulated grounds, showed greater differences than others. For example, i n  the tests of 
the circular configuration (figs. 17 to 19), the data revealed only a very limited difference 
regardless of which of the three techniques was employed. The square-type configura
tion (figs. 20 to 22) was more subject to differences in  pitching moment and l i f t  at the low 
heights, and the half-circle configuration showed large and significant changes in  the lon
gitudinal data (figs. 23 and 25) as a result  of difference in  technique. 

There are two vehicle shape parameters which may be affecting the technique dif
ferences. They are the contour of the vehicle bottom and the sharpness of the corners on 
the bottom of the model. These points will be expanded when each technique is examined 
in  the following sections. 

Comparison of stopped belt with moving belt.- As has been previously discussed and 
as stated in  reference 10, the moving ground belt provides the best simulation of real  con
ditions that can be provided in  the wind tunnel. The differences between the stopped-belt 
data and the moving-belt data (figs. 17 to 23) must, therefore, be a result  of improper 
ground simulation. The significant and obvious difference in  ground boundary-layer pro
file, coupled with the interaction of the flow about the model, results in  the differences 
measured, The circular configuration is less affected by this interaction because of the 
generally smooth flow over and under the model. On the other hand, the half-circle con
figuration must cause a rather turbulent flow pattern from separations off its sharp sides. 
This flow then mixes with the unrealistic boundary-layer buildup from the floor and 
reacts on the bottom of the model i n  a fashion not representative of the real  conditions. 
This boundary-layer buildup may also be responsible for basic flow changes across  the 
model. In addition, the boundary-layer growth on the ground beneath the model would 
tend to reduce the velocity of the air passing across  the bottom and could result in  
decreased pressure peaks. Furthermore, for this condition, more air would be forced to 
pass over the model and the higher velocities and greater suction pressures  on the upper 
surface would result in  the higher l i f t  values that were measured. (See figs. 23(a), 24(a), 
and 25(a).) 

Comparison of image technique with moving belt.- Reasons for the differences in  
the data between the image technique and the moving-belt technique are considerably more 
subtle than for the stopped belt. Theoretically, the image technique does present a fair 

i representation of the real  condition. Certainly, some of the model setup problems 
1 
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contributed to the differences, as did model buffeting, which was considerably worse for 
image tes ts  than for any other technique. 

Perhaps the principal reason for the differences, when the models a r e  very close 
together, is the intermixing of the flow between the models. This intermixing may cause 
an asymmetric flow region which would distort the imaginary ground and also change the 
effective ground height. Despite the observed differences in  the data, all the techniques 
give reasonable representations of the existing trends. 

CONCLUDING REMARKS 

A ser ies  of force tests was conducted on unpowered, high-speed ground-vehicle 
model configurations to provide information on shapes of this type very close to the 
ground. Of particular interest were the crosswind effects on the aerodynamic forces and 
moments of the six models tested. These tests were conducted over the moving-belt 
ground plane in  the lv-foot (5.18-m) test  section of the Langley 300-MPH 7- by 10-foot 
tunnel at free-stream dynamic pressure values of 10 lb/ft2 (478.8 N/m2). 

The results indicate that the half-circle configuration is desirable because of the 
low rolling moments it experienced; however, it did have higher lift values than the other 
configurations, and from a utility standpoint, could be impractical. The half-circle con
figurations with extended sides may make good compromise configurations. 

All the ground-simulation techniques employed - moving ground belt, fixed ground 
belt, and image model - gave reasonable representations of the overall aerodynamic 
trends. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., May 4, 1970. 
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Figure 2.- Drawing of c i rcular cross-section configuration. A l l  dimensions based on vehicle length, I = 72 inches (183 cm). 
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Figure 3.- Drawing of square-type cross-section configuration. A l l  dimensions based on vehicle length, 1 = 72 inches (183 cm). 
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Figure 4.- Drawing of triangular-type cross-section configuration. Al l  dimensions based on vehicle length, 1 = 72 inches (183 cml. 
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Figure 6.- Drawing of half-circle (short extended sides) cross-section configuration. A l l  dimensions based on vehicle length, I = 72 inches (183 cm). 
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Figure 7.- Drawing of half-circle (long extended sides) cross-section configuration. All  dimensions based on vehicle length, 1 = 72 inches (183 cm). 
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(a) Three-quarter front view of half-circle configuration. L-67-6404 

Figure 8.- Models over ground belt i n  tunnel. 
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(b) One-quarter 	rear view of half-circle configuration. L-67-6405 

Figure 8.- Continued. 



(c) Three-quarter rear view of square-type configuration. L-67-6789 

Figure 8.- Concluded. 
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Figure 9.- Schematic representation of image-test setup. 



(a) Half-circle configuration. L-68-7954 

Figure 10.- image-test setup. 



(b) Square-type configuration. L-68-8071 

Figure 10.- Concluded. 
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Figure 11.- Effect of configuration on lift, drag, and pitching moment. Ground belt moving; a = Oo. 
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Figure 11.- Continued. 
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Figure 11.- Continued. 
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Figure 11.- Continued. 
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Figure 11.- Continued. 
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Figure 11.- Concluded. 
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Figure 12.- Effect of configuration on  rol l ing moment, yawing moment, and side force. Ground belt moving; a = 00. 
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Figure 12.- Continued. 
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Figure 12.- Continued. 
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Figure 12.- Continued. 
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Figure 12.- Continued. 
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Figure 12.- Continued. 
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Figure 12.- Continued. 
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Figure 12.- Concluded. 
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Figure 13.- The effect of height o n  the  lateral effectiveness fo r  all configurations. Ground belt moving; a = Oo. 
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Figure 18.- Concluded. 
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Figure 19.- Effect of ground-simulation technique on the  aerodynamic characteristics of c i rcu lar  configuration. zz 0.01; a = 00. 
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Figure 19.- Concluded. 
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Figure 20.- Effect of ground-simulation technique on the aerodynamic characteristics of square-type configuration. 
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I0.20; a = 00. 
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Figure 20.- Concluded. 
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Figure 21.- Effect of ground-simulation technique on the aerodynamic characteristics of square-type configuration. 
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(b) Rolling moment, yawing moment, and side force. 

Figure 21.- Concluded. 
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Figure 22.- Effect of ground-simulation technique on the aerodynamic characteristics of square-type configuration. = 0.01; a = @.
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(b) Rolling moment, yawing moment, and side force. 

Figure 22.- Concluded. 
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(b) Rolling moment, yawing moment, and side force. 

Figure 23.- Concluded. 
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Figure 24.- Effect of ground-simulation technique on the aerodynamic characteristics of half-circle configuration. = 0.05; a = 00. 
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de 

63 




Half-circle cross- section configuration 

1.0 


.5 


0 


- .5 

/.0 

./.5 

(b) Rolling moment, yawing moment, and side force. 
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R e p r e s e n t a t i v e  v e h i c l e  

Weight 30 000 Ib (133447 newtons) 

Length 64 feet (19.35 meters) 

Width(effective1 8 feet (2.42 meters) 

Distance between wheel o r  a i r -cush ion  support points: 

Lateral $ feet ( I .  52 meters) 

Longitudinal 40 feet (12.16 meters) 
Support points 

(Wheels o r  a i r  cush ions)  

Figure 26.- Sketch and dimensions of a representative vehicle constructed for data analysis. 



Circular cross -section configurafion 
Ground belt moving 
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(a) Lift, drag, and pitching-moment coefficients. 

Figure 27.- Effect of ground height on the aerodynamic characteristics of c i rcu lar  configuration. Ground belt moving; a = 00. 
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Circular cross -section coniiguration 
Ground belt moving 
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(b) Lift, drag, and pitching-moment coefficients wi th base pressure corrections. 

Figure 27.- Continued. 
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Circular cross-section configuration 
Ground belt moving 
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(c) Rolling-moment, yawing-moment, and side-force coefficients. 

Figure 27.- Concluded. 
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Circular cross -section configurofion 
Ground bel /  stopped 
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(a) Lift, drag, and pitching-moment coefficients. 

Figure 28.- Effect of ground height on the aerodynamic characteristics of circular configuration. Ground belt stopped; a = 00. 
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Circu/or cross -section configurafion 
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(b) Lift, drag, and pitching-moment coefficients wi th  base pressure corrections. 

Figure 28.- Continued. 
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Circular cross -section configuration 
Ground b e / /  stopped 
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(c) Rolling-moment, yawing-moment, and side-force coefficients. 

Figure 28.- Concluded. 
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Squore-type cross-section configuration 
Ground belt moving 
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(a) Lift, drag, and pitching-moment coefficients. 

Figure 29.- Effect of ground height on the aerodynamic characteristics of square-type configuration. Ground belt moving; a = 00. 
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Square-type cross-section conf igurot ion 
Ground belt moving 
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(b) Lift, drag, and pitching-moment coefficients wi th  base pressure corrections. 

Figure 29.- Continued. 
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Square-type cross -sec f ion configuration 
Ground be/f moving 
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(c) Rolling-moment, yawing-moment, and side-force coefficients. 

Figure 29.- Concluded. 
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Square-type cross-section configuration 
Ground bel t  stopped 
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(a) Lift, drag, and pitching-moment coefficients. 

Figure .30.- Effect of ground height on t h e  aerodynamic characteristics of square-type configuration. Ground belt stopped; a = 00. 
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Square-type cross-section configuration 
Ground be/t stopped 
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(b) Lift, drag, and pitching-moment coefficients with base pressure corrections. 

Figure 30.- Continued. 
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Squore-type cross -section configuration 
Ground belt stopped 
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(c) Rolling-moment, yawing-moment, and side-force coefficients. 

Figure 30.- Concluded. 
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Triangular-type cross -section configuration 

Ground bel t  moving 
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(a) Lift, drag, and pitching-moment coefficients. 

Figure 31.- Effect of ground height on the aerodynamic characteristics of triangular-type configuration. Ground belt moving; a = 00. 
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Triangu/ar-type cross -sect ion configuration 
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(b) Lift, drag, and pitching-moment coefficients w i th  base pressure corrections. 

Figure 31.- Continued. 
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Triangular-type cross-section configuration 
Ground belt moving
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(c) Rolling-moment, yawing-moment, and side-force coefficients. 

Figure 31.- Concluded. 
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Triangular-type cross-section con figuration 
Ground belt stopped 
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(a) Lift, drag, and pitching-moment coefficients. 

Figure 32.- Effect of ground height on the  aerodynamic characteristics of triangular-type configuration. Ground belt stopped; a = 00. 
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Triangular-type cross- section configuration 
Ground bel t  stopped 
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(b) Lift, drag, and pitching-moment coefficients w i th  base pressure corrections. 

Figure 32.- Continued. 
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Triangular-fype cross -secf ion configurafion 
Ground bel/ sfopped
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(c) Rolling-moment, yawing-moment, and side-force coefficients. 

Figure 32.- Concluded. 
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Ha/f  -circ/e cross-section configuration 
Ground belt moving 
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(a) Lift, drag, and pitching-moment coefficients. 

Figure 33.- Effect of ground height on  the aerodynamic characteristics of half-circle configuration. Ground belt moving; a = 00. 
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Half -circle cross-secfion con figurafion 
Ground belt moving 
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(b) Lift, drag, and pitching-moment coefficients with base pressure corrections. 

Figure 33.- Continued. 
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Half circle cross -secfion configurafion 
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(c) Rolling-moment, yawing-moment, and side-force coefficients. 

Figure 33.- Concluded. 
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Half -circ/e cross -secfion con figuration 
Ground be/t  stopped 
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(a) Lift, drag, and pitching-moment coefficients. 

Figure 34.- Effect of ground height on  the aerodynamic characteristics of half-circle configuration. Ground belt stopped; a = 00. 
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Half  - circle cross -section configuration 

Ground belt stopped 
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(b) Lift, drag, and pitching-moment coefficients with base pressure corrections. 

Figure 34.- Continued. 

88 


I I1 I1 



Ha l f  - c i rc le  cross-section configurofimi 

Ground belt sfopped 
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(c) Rolling-moment, yawing-moment, and side-force coefficients. 

Figure 34.- Concluded. 
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H a l f  -circle /short ex fended sides} cross-section configuration 
Ground b e l t  moving 
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(a) Lift, drag, and pitching-moment coefficients. 
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Figure 35.- Effect of ground height on the  aerodynamic characteristics of half-circle (short extended sides) configuration. 
Ground belt moving; a = Oo. 

90 




Ha/ f -circle [short extended sides) cross-secfion configurafion 

Ground b e / /  moving 
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(b) Lift, drag, and pitching-moment coefficients wi th base pressure corrections. 

Figure 35.- Continued. 
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Haif -circie/sbort extendedsides) cross-section configura f ion 
Ground belt moving 
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(c)  Rolling-moment, yawing-moment, and side-force coefficients. 

Figure 35.- Concluded. 
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HaIf -c i rc  le  (shor t ex tended sides) cross-section configuration 
Ground bel t  stopped 
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(a) Lift, drag, and pitching-moment coefficients. 

Figure 36.- Effect of ground height on the aerodynamic characteristics of half-circle (short extended sides) configuration. 
Ground belt stopped; a = @. 
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Half -c i rc le  (shor f ex fended sides) cross-sec f ion conf igura f ion 
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(b) Lift, drag, and pitching-moment coefficients w i th  base pressure corrections. 

Figure 36.- Continued. 
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Half  -c i rc le /shor f  extended sidesjcross-section configuration 
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(c) Rolling-moment, yawing-moment, and side-force coefficients. 

Figure 36.- Concluded. 
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H a l f  -circle (long ex fended sides) cross -section confiqurafion 
Ground be l t  moving 

(a) Lift, drag, and pitching-moment coefficients. 

Figure 37.- Effect of ground height on the aerodynamic characteristics of half-circle (long extended sides) configuration. 
Ground belt moving; a = 00. 
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Holf -circle f longenfended sides) cross-secfion configuration 
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(b) Lift, drag, and pitching-moment coefficients with base pressure corrections. 

Figure 37.- Continued. 
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Half -circle /long extended sides) cross-section configuration 
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(c) Rolling-moment, yawing-moment, and side-force coefficients. 

Figure 37.- Concluded. 
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Hal f  -circle f long ex fended sidesjcross -sect ion con figurafion 

Ground belt stopped 
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(a) Lift, drag, and pitching-moment coefficients. 

Figure 38.- Effect of ground height on  the  aerodynamic characteristics of half-circle (long extended sides) configuration. 
Ground belt stopped; a = 00. 
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H a l f  -circle {long extended sides) cross -section configuration 
Ground belt stopped 
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(b) Lift, drag, and pitching-moment coefficients w i th  base pressure corrections. 

Figure 38.- Continued. 
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Half -c i rc le  (long extended sides) cross-section configufation 
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Figure 38.- Concluded. 
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Circular cross-section configuration ,&je =.03 
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(a) Lift, drag, and pitching-moment coefficients. 


Figure 39.- Effect of angle of attack a on the aerodynamic characteristics of c i rcu lar  configuration. 
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Circular cross -section configurotion, H/de =.03 
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(b) Lift, drag, and pitching-moment coefficients wi th base pressure corrections. 

Figure 39.- Continued. 
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Circular cross-secfion configuration, #/de =.03 
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(c) Rolling-moment, yawing-moment, and side-force coefficients. 

Figure 39.- Concluded. 
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Square-type cross-sect ion conf iguration, H/de =.03 
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(a) Lift, drag, and pitching-moment coefficients. 

Figure 40.- Effect of angle of attack a on the aerodynamic characteristics of square-type configurations. 
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Square-type cross-section configuration, =.03 
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(b) Lift, drag, and pitching-moment coefficients w i th  base pressure corrections. 

Figure 40.- Continued. 
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Squore-type cross-section configurofion, H/de =03 
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(c) Rolling-moment, yawing-moment, and side-force coefficients. 

Figure 40.- Concluded. 
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Triangular-type cross - sect ion configuration, &de =.03 
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(a) Lift, drag, and pitching-moment coefficients. 


Figure 41.- Effect of angle of attack a on the aerodynamic characteristics of triangular-type configuration. 


108 


I1 I . I11  111111 I 



Triangular-type cross -section conf igurot  ion, /7/de =.03 
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(b) Lift, drag, and pitching-moment coefficients with base pressure corrections. 

Figure 41.- Continued. 
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Triangular-type cross -section configuration, H/de =+73 

ff,deg Ground belt 
0 
0 
.32 
.32 

. j  

i !  
! !  

i 

_i

;i 

: I .  - I  

Moving 
Stopped 
Moving 
Stopped 

, . .  

, , .  
I 

. .  1.0 

: I  .5 

I
i- : 

0 

cn 
- .5 

- 1.0 

-1.5 

2.0 

F 

/ ,  

:1. 
-12 -8  - 4  0 4 8 12' l6 20 24 

P,deg 

(c) Rolling-moment, yawing-moment, and side-force coefficients. 

Figure 41.- Concluded. 
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Hal f-circf e cross-section configuration, & j e  = 0 3  
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(a) Lift, drag, and pitching-moment coefficients. 

Figure 42.- Effect of angle of attack a on the  aerodynamic characteristics of half-circle configuration. 
Ground belt moving. 
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Holf-circle cross -section configurofion ,H/de=.03 
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(b) Lift, drag, and pitching-moment coefficients wi th  base pressure corrections. 

Figure 42.- Continued. 
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Ha/f-circlecross-section configuration, &je = .03 
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(c) Rolling-moment, yawing-moment, and side-force coefficients. 

Figure 42.- Concluded. 
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Half-circle cross -section configuration, H/de 5.03 
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(a) Lift, drag, and pitching-moment coefficients. 


Figure 43.- Effect of angle of attack a on the aerodynamic characteristics of half-circle configuration.

Ground belt stopped. 


114 




Ha/Lcirc le cross -section configuration, &de = .03 
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(b) Lift, drag, and pitching-moment coefficients w i th  base pressure corrections. 

Figure 43.- Continued. 
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Hal Lc i rc le  cross -section configuration, &de =.03 
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(c) Rolling-moment, yawing-moment, and side-force coefficients. 

Figure 43.- Concluded. 
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Ho/f-c i rc/e cross section configuration, +de =.05 
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(a) Lift, drag, and pitching-moment coefficients. 

Figure 44.- Effect of angle of attack a on the  aerodynamic characteristics of half-circle configuration. 
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Half-circ/ecross-section configuration, /-?/de =.05 
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(b) Lift, drag, and pitching-moment coefficients wi th  base pressure corrections. 

Figure 44.- Continued. 
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Hoff-circfe cross -section configuration,H/de =.05 
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(c) Rolling-moment, yawing-moment, and side-force coefficients. 

Figure 44.- Concluded. 
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Half-circle(sharf ex fendedsides/cross section,H/de =.03 

(a) Lift, drag, and pitching-moment coefficients. 


Figure 45.- Effect of angle of attack a on t he  aerodynamic characteristics of half-circle (short extended sides) configuration. 
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Ha/f-circ/e/sboriexiendedsides/cross section, /?!/de= .03 
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(b) Lift, drag, and pitching-moment coefficients with base pressure corrections. 

Figure 45.- Continued. 
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Half-circle (short ex fended sides) cross section, H/de 2.03 
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(c) Rolling-moment, yawing-moment, and side-force coefficients. 

Figure 45.- Concluded. 
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Ho/f-circ/e/shorfextended sidesj cross section, H/de 5.05 
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(a) Lift, drag, and pitching-moment coefficients. 

Figure 46.- Effect of angle of attack a on the  aerodynamic characteristics of half-circle (short  extended sides) configuration. 
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Ha/fcircle/short extended sides} cross section, /-/de=.05 
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(b) Lift, drag, and pitching-moment coefficients w i t h  base pressure corrections. 

Figure 46.- Continued. 
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Half-circle/shortextendedsides/cross sect ion, &de =.05 
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(c) Rolling-moment, yawing-moment, and side-force coefficients. 

Figure 46.- Concluded. 
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Half-circlef long ex tended sides) cross secf ion,H/de =.03 
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(a) Lift, drag, and pitching-moment coefficients. 

Figure 47.- Effect of angle of attack a on the aerodynamic characteristics of half-circle (long extended sides) configuration. 
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Hal f-circleflong exfendedsidesj cross section, H/de=.03 
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(b) Lift, drag, and pitching-moment coefficients wi th  base pressure corrections. 

Figure 47.- Continued. 
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ffo/f-circle/long extended sides}cross section, ff/de =.03 
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(c) Rolling-moment, yawing-moment, and side-force coefficients. 

Figure 47.- Concluded. 
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Half-circle/long ex fended sides/cross section, &de =.05 
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(a) Lift, drag, and pitching-moment coefficients. 

Figure 48.- Effect of angle of attack a on the aerodynamic characteristics of half-circle (long extended sides) configuration. 
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HaIf-circle(long ex f ended sides) cross secf ion, H/de =. 05 
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(b) Lift, drag, and pitching-moment coefficients with base pressure corrections. 

Figure 48.- Continued. 
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Half-circle/long extended sides) cross secfion,H/de =.05 
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(c) Rolling-moment, yawing-moment, and side-force coefficients. 

Figure 48.- Concluded. 
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Circular cross-section configuration(imoge technique) 
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(a) Lift, drag, and pitching-moment coefficients. 

Figure 49.- Effect of height, by using image-model ground-simulation technique, on the aerodynamic characteristics of c i rcu lar  configuration. 
a = 00. 
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Circular cross-section configuration (image technique) 
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(b) Lift, drag, and pitching-moment coefficients w i th  base pressure corrections. 

Figure 49.- Continued. 
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Circu1or cross- secfion configurofion/image technique) 

.6 


.4 


.2 2.0 


0 I.5 


Cl -2 1.0 

-.4 .5 

-.6 0 
cn 

- .B - .5 

-1.0 

1.0 -1.5 

.5 2.0 

0 

-12 -8  -4 0 4 8 12 16 20 

P d e 9  

(c) Rolling-moment, yawing-moment, and side-force coefficients. 

Figure 49.- Concluded. 
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Square-type cross-section configurotion fimoge technique) 
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(a) Lift, drag, and pitching-moment coefficients. 

Figure 50.- Effect of height, by us ing image-model ground-simulation technique, on the aerodynamic characteristics of square-type configuration. 
a = 00. 
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Square-fype cross-section configurafion/image fechnique) 
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(b) Lift, drag, and pitching-moment coefficients with base pressure corrections. 

Figure 50.- Continued. 
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Square-type cross -section configuraf ion/image technique) 
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(c) Rolling-moment, yawing-moment, and side-force coefficients. 

Figure 50.- Concluded. 
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Half-circle cross-section configurafion/image fechnique) 
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(a) Lift, drag, and pitching-moment coefficients. 

Figure 51.- Effect of height, by using image-model ground-simulation technique, on the aerodynamic characteristics of half-circle configuration. 
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Half-c i rc  /e cross-secf ion conf iguraf ionf image fechnique) 
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(b) Lift, drag, and pitching-moment coefficients wi th  base pressure corrections. 

Figure 51.- Continued. 
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Half-c i rcle  cross-section configurationf image technique) 
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(c) Rolling-moment, yawing-moment, and side-force coefficients. 

Figure 51.- Concluded. 
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